NOAA Technical Memorandum NWS WR-132

ESTIMATES OF THE EFFECTS OF TERRAIN BLOCKING ON THE LOS ANGELES WSR-74C WEATHER RADAR

R. G. Pappas, R. Y. Lee, and B. W. Finke

National Weather Service Forecast Office
Los Angeles, California
October 1978

This Technical Memorandum has been reviewed and is approved for publication by Scientific Services

Division, Western Region.

L. W. Snellman, Chief Scientific Services Division Western Region Headquarters Salt Lake City, Utah

CONTENTS

Page
Tables and Figure ii i

1. Introduction 1
2. Application to the Los Angeles Radar 1
3. Reference 2
Appendix 5

TABLES AND FIGURE

Page

Table A. Program Listing . .., , . . 2

Table B. Program Optput. 3

Figure 1. Effects of Terrain Blocking on Los Angeles WSR-74C
Radar 4

R. G. Pappas, R. Y. Lee, and B. W. Finke

Weather Service Forecast Office
Los Angeles, California

1. INTRODUCTION

In the western United States weather radar antennas often must be placed at valley-floor locations bounded on one or more sides by mountainous terrain because of high cost of remoting and difficulty of maintenance. This reduces the effective range of the radar for precipitation detection and its capability to measure intensity to distances less than that limited by earth's curvature alone.

Pappas (1967) derived a simple geometric technique for estimating the height of the base of the radar beam due to the combined effects of the earth's curvature and partial blocking by nearby mountains. A.condensed version of his paper is given in the Appendix. This technique was developed for the Sacramento WSR-57 radar to assist users in understanding the radar's limitations and in interpneting observations. This same technique may also be applied to other radar systems and is presented here as an example for development of similar data to assist users in other areas in their evaluation of radar data.

1I. APPLICATION TO THE LOS ANGELES RADAR

The Los Angeles WSR-74C radar was installed in early 1978 on top of the Federal Building in west Los Angeles, California. This location is in an area adjacent to mountainous terrain. The Pappas technique was programmed in BASIC by B. W. Finke and run on a microcomputer for application to this radar's site. Table A is the program listing. An example of the output is presented in Table B. Result of plotting the entire output on a map of the area is presented in Figure 1. This provides an easy reference to refer to when determining areas of poor detection or when ascertaining capability of radar to see over particular drainages. Dotted lines represent heights to which storms must reach in order to be detected by the radar.

The map (Figure 1) shows extensive blocking in the west-through-north-through-east sector. (Almost total blocking over a small sector to the east-northeast caused by nearby high buildings is not included in Figure 1.) Less severe blocking occurs to the south and east-southeast. The heavily blocked area over the northern semicircle area will undoubtedly lessen the radar's effectiveness in assessing flash-flood potential over Santa Barbara and northern Ventura Counties, San Gabriel Mountains, northern San Bernardino Mountains, Antelope Valley, and Mojave Desert.

111. REFERENCE

Pappas, R. G., 1967: Derivation of Radar Horizons in Mountainous Terrain. NOAA Technical Memorandum NWS WR-22, National Weather Service, Western Region, Salt Lake City, Utah, 6.p.

OK

LIST

```
A DIM K(100),HT(100), [(1\cup0),H(4) 100)
10 INPUT'NUMBER ')F rJINTS ALJNG BEARING';N
20 INPUT"bEARIVG(DEGS)";A
30 FOKI=1[JN
35 INPUT'KANGE,ELEVATI)N';r(1),T(1)
40 IF R(1)=<| THEN 6U
So NEXT
6# PRINT"INPIJT TERMINATED':PRIVI
65 STJP
100 0J「53,23
110 POKE 1233.53:PJKE1,241,54:NJLLG
12U FOR I=1TOSUU:U=1.5.9*I:NEXT
130 PRINTA
135 PRINTN
14\triangle FDRI=1TJI\triangleU:Q=15.4*I:NEXI
150 FOR [=1「JN
16: PKINTK(1)
174 PKLN[f(1)
180 NExT
185 Dur53.55
196 PJKE 1233,51:PJKE1241,503:NULLU
1y5 rRINF"TAPED':HKINT
20. 5A=\operatorname{ser}(5*0)
210 
22| FJR 1=1[JN
234 H[(I)=((R(I)/1.23)-SA)+2
240 OV S G.jF) 250,280
250 IF H[(I)>=T(I) THEV HM(1)=H[(I):GJTJE95
26*) K=(T(I)-HT(I))/R(I)
276 5=2
2%vjHM(I)=H[(I)+K*R(I)
2,0 IF HM, (I)<I(I) THEN 250
2YS NEXT
3GE IF(31ANDINP(255))=0 THEN 320
310 POKE1233,67:PJKE1241,66
32G PRINT"RADAK MJKIEJN FJR ";A;"DEGS":PRINT:PKINI
```



```
340 F.Jत I=1[J,N
350 PKlNTR(I),T(I),INT(HT(1)+.5),INT(HM(I)+.5)
364 vext
370 HJKE1233,51:rJKE 1241,56
360 EV!
OK
```

 Table A. Program Listing.
 RADAK MOKLEDN FOR 5 DEGS

KANGE(MIS)	TRRV HGT	ECHJ ALT	IRKN MJD	E(H) ALI
5	1000	401	1000	
10	1100	255.	1453	
15	800	141	1739	
20	3600	61	3600	
25	2000	14	4438	
30	4200	0	5308	
40	4600	71	7149	
50	3100	274	9121	
60	6100	610	11226	
70	6100	1078	13453	
80	5600	1678	15833	
90	8100	2410	18334	
100	6600	3274	20968	
110	9600	4270	23734	
130	9600	6660	29562	
150	11600	9578	35119	
170	14384	13025	43105	
190	12560	17001	50620	

Table B. Program output for azimuth angle of 50°. For each range, the program lists the terrain height (TRRN HGT - input from a suitable topographic map); the radar beam-base height without consideration of terrain (ECHO ALT); and the radar beam-based height modified for terrain blocking (TRRN MOD ECHO ALT). Heights are in feet, range in nautical miles.

Figure 1. Effects of Terrain Blocking on Los Angeles WSR-74C Radar. Dotted lines represent heights to which storms must reach in order to be detected by the radar.

APPENDIX

Technique for Derivation of Earth's Curvature and Blocking Chart*

Hiser and Freseman (page 83, equation 40) give the maximum possible range between a radar and a target as limited only the radar horizon. This equation assumes standard propagation conditions and radar capability of target detection at this range.
(1) $R_{\text {hmax }}=1.23\left(\sqrt{h_{r}}+\sqrt{h_{f}}\right)$ nautical miles where $R_{\text {max }}$ is the range to the target, h_{r} is the height of the radar antenna in feet, and h_{t} is the height of the target in feet.

By solving for h_{t} it is possibla to determine the minimum target height for interception of the radar beam at a given range:

$$
\text { (2) } h_{t}=\left(R_{\max } / 1.23-\sqrt{h_{r}}\right)^{2} \text {. }
$$

The computation of the minimum target height is complicated by the introduction of a mountain barrier or "block" in the radar beam. This is illustrated in Figure 1. : In Figure 1 the location of the radar is at Point. R. Point H is where the radar beam is tangential to the earth, i.e., the horizon of the radar. A mountain or blocking barrier is introduced at Point E, with a height CE. It is desired to determine the height of the beam's case, $C^{\prime} E^{\prime}$, oyer Point E^{\prime} after partial beam blocking by the mountain at E.

It can be seen that B is the point at. which the base of the beam is intercepted by the mountain and BB' represents the extension of the beam's base if no blocking had occurred. Further, the stippled area represents the region below the radar horizon, and the hatched area the additional region blocked by the mountain at E. HBB' is the locus of h_{+}.

Since $R C B$ and RC' B^{\prime} are triangles which are approximately similar,

$$
\frac{C B}{R H B} \approx \frac{C^{\prime} B^{\prime}}{R H B B^{\prime}} \text {, where } C B=C E-B E \text {, or the difference }
$$

between the elevation of the mountain and h_{+}computed for range to E. RHB is essentially the range to E, and $R H B B^{\prime}$ is the given range to E^{\prime}. Hence, $C^{\prime} B^{\prime}$ is easily evaluated, and when added to $B^{\prime} E^{\prime}$ (the value of $h+$ at Point E') gives the value of $C^{\prime} B^{\prime} E^{\prime}$, the minimum target height for penetration of the radar beam.

In cases where higher terrain is down range from the blocking mountain at, say, Point E', it is necessary to test whether or not it is higher than C'B'E'. It it is higher, a new proportionality must be set up based on the amount of further blocking caused by the peak at Point E'. If not,
*Pappas, 1967: Derivation of Radar Horizons in Mountainous Terrain, NOAA Technical Memorandum NWS WR-22.

APPENDIX (Contlnuad)

the computations continue down range at intervals of 10 to 20 nautical miles.

The construction of the blocking charts was accomplished by tabulating terrain height data along azimuth radials from the radar at five-degree increments. Using an aeronautical chart showing 1000-foot contours, the crossing of each contour on the radials is noted with regard to its range. In the case of mountain peaks, the exact elevation is recorded. Starting with the first contour of elevation that is higher than the h_{+}value at that range, the "blocking" computation is begun and carried down range as explained above (with, of course, testing for additional down-range blocking by higher terrain and setting up new proportionalities if necessary). Values for CBE, C'B'E', C"B'E', etc., (or h_{+}if there is no terrain blocking) along each five degrees of azimuth are then plotted and isopleths drawn to obtain the final chart. The procedure is rather time-consuming and tedious, but certainly worth the effort. Once the computations get beyond about 100 nautical miles, they become fewer since blocking from terrain rarely occurs at those extended ranges. It should be pointed out that this technique could easily be programmed for a computer.

Reference:

Hiser and Freseman, 1959: Radar Meteorology, The Marine Laboratory University of Miami, Coral Gables, Florida, p: 83.

Technique for Derivation of Earth's Curvature and Blocking Chart**
Hiser and Freseman (page 83, equation 40) give the maximum possible range between a radar and a target as limited only the radar horizon. This equation assumes standard propagation conditions and radar capability of target detection at this range.
(1) $R_{h \max }=1.23\left(\sqrt{h_{r}}+\sqrt{h_{t}}\right)$ nautical miles where $R_{\text {max }}$ is the range to the target, h_{r} is the height of the radar antenna in feet, and h_{t} is the height of the target in feet.

By solving for h_{t} it is possible to determine the minimum target height for interception of the radar beam at a given range:
(2) $h_{t}=\left(R_{\max } / 1.23-\sqrt{h_{r}}\right)^{2}$.

The computation of the minimum target height is complicated by the introduction of a mountain barrier or "block" in the radar beam. This is illustrated in Figure 1. In Figure 1 the location of the radar is at Point R. Point H is where the radar beam is tangential to the earth, i.e., the horizon of the radar. A mountain or blocking barrier is introduced at Point E, with a height.CE. It is desired to determine the height of the beam's case, $C^{\prime} E^{\prime}$, over Point E^{\prime} after partial beam blocking by the mountain at E.

It can be seen that B is the point at which the base of the beam is intercepted by the mountain and BB' represents the extension of the beam's base if no blocking had occurred. Further, the stippled area represents the region below the radar horizon, and the hatched area the additional region blocked by the mountain at E. $H B B$ ' is the locus of h_{+}.

Since $R C B$ and $R C^{\prime} B^{\prime}$ are triangles which are approximately similar,

$$
\frac{C B}{R H B} \approx \frac{C^{\prime} B^{\prime}}{R H B B^{\prime}} \text {, where } C B=C E-B E \text {, or the difference }
$$

between the elevation of the mountain and $h+$ computed for range to E. RHB is essentially the range to E, and $R H B B^{\prime}$ is the given range to E^{\prime}. Hence, $C^{\prime} B^{\prime}$ is easily evaluated, and when added to $B^{\prime} E^{\prime}$ (the value of h_{+} at Point E^{\prime}) gives the value of $C^{\prime} B^{\prime} E^{\prime}$, the minimum target height for penetration of the radar beam.

In cases where higher terrain is down range from the blocking mountain at, say, Point E^{\prime}, it is necessary to test whether or not it is higher than $C^{\prime} B^{\prime} E^{\prime}$. It it is higher, a new proportionality must be set up based on the amount of further blocking caused by the peak at Point E'. If not,
*Pappas, 1967: Derivation of Radar Horizons in Mountainous Terrain, NOAA
Technical Memorandum NWS WR-22.

APPENDIX (Continued)

the computations continue down range at intervals of 10 to 20 nautical miles.

The construction of the blocking charts was accomplished by tabulating terrain helght data along azimuth radlals from the radar at five-degree increments. Using an aeronautical chart showing l000-foot contours, the crossling of each contour on the radials is noted with regard to its range. In the case of mountain peaks, the exact elevation is recorded. Starting with the first contour of elevation that is higher than the h_{+}value at that range, the "blocking" computation is begun and carried down range as explained above (with, of course, testing for additional down-range blocking by higher terrain and setting up new proportionalities if necessary). Values for CBE, C'B'E', C"B'E', etc., (or h_{+}if there is no terrain blocking) along each five degrees of azimuth are then plotted and isopleths drawn to obtain the final chart. The procedure is rather time-consuming and tedious, but certainly worth the effort. Once the computations get beyond about 100 nautical miles, they become fewer since blocking from terrain rarely occurs at those extended ranges. It should be pointed out that this technique could easily be programmed for a computer.'

Reference:
Hiser and Freseman, 1959: Radar Meteorology, The Marine Laboratory University of Miami, Coral Gables, Florida, p. 83.

Figure I. Beam Blocking Diagram.

 $(6 E 02=75=10428(A 5)$

 ($\left.{ }^{\circ} \mathrm{P}=264=65 \mathrm{~F} / \mathrm{AS}\right)$

 Apri 6077 RE $E=272=836$

 dune tg7: (FBe27l=704AS)

 Meike, Febrary 1978: (PE=28p=38//as)

NOAA SCUENTIWIC AND TTECHNICAL PUBLICATIONS

 ment of Commence october 3, 1970: The mission resposibities of NOAA are to montor and predict the state of the solid tearth, the oceans and their living tesources, the atmosphene, and the space environinent off

The six Mayor Hise Component of NOAA regularly produce various types of sientife and tehnical intormation in the folloxing kinds of publleatyons

PROFIESSIONAL PAPIES - Mpertant definitive research results, major techniques, and special lim vestigations.
TTEHINICAL REPORTS- dournal quality with ex Rensive details, mathematical developments, or đata ilistings
TECHIICAL MIOMORADUMS-RCDIGS prelinitiary, partial, or negative research or rechnology resulls : mitenim instructions, and the lake:
CONTRACT AND GRANTT REORTS=ReOTIS prepared by contractors or grantees tuder NOAA sponsorship.

TTECHNICAL SEREICE PUBLCATIONS =TheSE are publications containing data, observations, in= structons, etc. A partial listing Data senals, Pree diction and outicok peñodealss Trechnisal manuals, training papers, planding reports, amid information serialst and Misceillaneous technical publications.

ATLAS-Analysed data generdly presented in the form of maips showng distribution of rainfiall, chem= ical and physical conditions of ©ceans and atmos= phere, discritbution of fishes and marine mannails, ionosphenic condilions, etc

- Antinuotion on availobifity of NoaA publications can be obrained froms

ENVLXONWENTAL SCIENCB NEORWATUON EENTER GNVRONFWNVAG DAUA BERVICE
 USO DEPARTMENT OS GOMVNERG 3800 Whifefiamen Shreato Now W/ashirgrano Doc. 202ab

